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SUMMARY

In the direct simulation Monte-Carlo (DSMC) method for simulating rare�ed gas �ows, the velocities of
simulator particles that cross a simulation boundary and enter the simulation space are typically generated
using the acceptance–rejection procedure that samples the velocities from a truncated theoretical velocity
distribution that excludes low and high velocities. This paper analyses an alternative technique, where
the velocities of entering particles are obtained by extending the simulation procedures to a region
adjacent to the simulation space, and considering the movement of particles generated within that region
during the simulation time step. The alternative method may be considered as a form of acceptance–
rejection procedure, and permits the generation of all possible velocities, although the population of high
velocities is depleted with respect to the theoretical distribution. Nevertheless, this is an improvement
over the standard acceptance–rejection method. Previous implementations of the alternative method
gave a number �ux lower than the theoretical number required. Two methods for obtaining the correct
number �ux are presented. For upstream boundaries in high-speed �ows, the alternative method is more
computationally e�cient than the acceptance–rejection method. However, for downstream boundaries,
the alternative method is extremely ine�cient. The alternative method, with the correct theoretical
number �ux, should therefore be used in DSMC computations in favour of the acceptance–rejection
method for upstream boundaries in high-speed �ows. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The direct simulation Monte-Carlo (DSMC) method is a computational �uid dynamics (CFD)
scheme that recognizes the discrete molecular character of gases and models the macroscopic
gas behaviour by simulating the motions of and collisions between representative simulator
particles within a spatial array of computational cells. Most rare�ed gas �ows of engineering
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Figure 1. Kinetic temperature and density pro�les within a Mach 5 normal shock for
a gas with viscosity �∝T 0:72, as calculated using the DSMC1S code of Bird [2].
The �ow direction is indicated by V . The temperature and density are normalized
according to the general expression q̂=(q− q1)=(q2− q1), where q is the quantity of
interest, q̂ is the normalized quantity and the subscripts 1 and 2 refer to upstream and
downstream conditions, respectively. Upstream and downstream sample sizes were
approximately 5 × 106 and 1:7 × 107, respectively. The x co-ordinate is normalized

with respect to the upstream nominal mean free path �nom; 1 = 2�1=(�1 �c1).

interest are simulated using the DSMC method. The DSMC method was introduced by
Bird [1], and has been described in detail by Bird [2]. An essential DSMC approximation is
that convection and collision processes are decoupled, and are performed independently and
sequentially after time increments less than the mean molecular collision time. Essentially,
the DSMC procedure is comprised of four basic steps, as summarized below ([3]):

1. Perform convection step and enforce boundary conditions.
2. Index simulator particles and cross-reference to cells and subcells.
3. Select collision partners within subcells and perform intermolecular collisions and chem-
ical reactions. In the DSMC method, these processes are performed probabilisitically.

4. Sample the �ow�eld.

As an example of the use of the DSMC method, the internal structure of a normal shock has
been calculated, and presented in Figure 1. In such a simulation, a method for obtaining the
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velocities of simulator particles crossing the upstream and downstream simulation boundaries
and entering the simulation space is required.
Consider the �ow across a typical stream boundary in a DSMC computation. The unit

vector normal to the boundary n̂ is directed into the simulation space. If the �ow velocity
vector is V, the component of V normal to the boundary V is given by V =V · n̂. For an
upstream boundary, V¿0, while V¡0 for a downstream boundary. Molecular and thermal
velocity components normal to the boundary are denoted by v and c= v − V , respectively.
The requirement is to obtain the normal velocity components v of those particles crossing the
boundary and entering the simulation space, according to the velocity distribution characteristic
of the external �ow. After v is obtained for a particle, the velocity components parallel to
the boundary, denoted vp; q, must be obtained. These are obtained in a process separate to
that used to obtain v, by sampling from the velocity distribution characteristic of the external
�ow. The sampling process for obtaining vp; q is independent of the method for obtaining v.
Only equilibrium conditions in the external �ow are considered in this paper, which are rep-

resented by the Maxwell–Boltzmann velocity distribution f0∝ exp(−�2c2), where �=(2RT )−1=2
is the reciprocal of the most probable thermal speed, R is the speci�c gas constant and T is
the temperature. For this case, the theoretical distribution of entering velocities is given in
Section 2. The analysis could readily be extended to other distributions, such as the Chapman–
Enskog distribution.
In the DSMC technique, the acceptance–rejection procedure is usually employed to select

normal velocity components from the distribution function characteristic of those particles
crossing the boundary [2]. The acceptance–rejection method for obtaining samples from a
prescribed probability density distribution function f(v) is a two-step process. Firstly, a pos-
sible random value of v, denoted v∗, is generated, which is uniformly distributed within
the range of interest. Secondly, the value v∗ is accepted if f(v∗)=fmax¿Rf, where fmax is the
maximum of the distribution f and Rf is a uniformly distributed random fraction in
the range 06Rf61. In this paper, this acceptance–rejection method is referred to as the
standard method, and will be discussed in detail in Section 3.
Hybrid CFD methods that employ the DSMC technique for rare�ed regions of the �ow and

continuum solvers elsewhere typically use bu�er cells adjacent to the periphery of the DSMC
domain. An example of such a hybrid method is described by Garcia et al. [4]. The bu�er
cells are �lled with particles during the DSMC convection phase, and those particles that
cross the boundary into the DSMC domain are retained. Macrossan [5] used this method for
generating the velocities of particles entering a DSMC normal shock simulation. This method
extends the DSMC simulation procedures to the region adjacent to the simulation boundary,
and may be considered as a form of acceptance–rejection procedure. In this paper, this method
will be referred to as the alternative method, and is discussed in detail in Section 4.

2. THE THEORETICAL VELOCITY DISTRIBUTION

The probability of a gas particle crossing a boundary is proportional to the velocity nor-
mal to the boundary v. Therefore, for an equilibrium gas, the theoretical velocity distribu-
tion for particles crossing the boundary and entering the simulation space, denoted ft , is
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given by

ft(v)=K−1
t v exp(−�2c2) (1)

where K−1
t is the normalization constant. The �ow conditions V , T and number density n

outside the boundary adjacent to the simulation space are known. The normalization constant
K−1
t in Equation (1) is calculated using the normalization condition∫ ∞

0
ft dv=1

and is given by

2�2Kt = S
√
�(1 + erf S) + exp(−S2)

where S=�V is the non-dimensional speed ratio. The maximum value ft;max of ft is

ft;max =� exp(−�)(2�Kt)−1 (2)

where

�= S + (S2 + 2)1=2 and 2�=1+ S[S − (S2 + 2)1=2]
The theoretical number �ux of particles crossing the simulation boundary, denoted Ṅ , is
given by

Ṅ = n�Kt=
√
�

3. THE STANDARD ACCEPTANCE–REJECTION METHOD

The standard method for generating the velocities of particles entering a DSMC computa-
tion space makes use of the acceptance–rejection technique, as described in Section 1, to
select velocities from the theoretical velocity distribution of Equation (1) [2]. In applying
the acceptance–rejection procedure to this distribution, it is necessary to limit the range of
v∗, because when ft(v∗)=ft;max is small, there is a low probability of acceptance, which re-
sults in poor computational e�ciency. Using vmin6v6vmax, the distribution of entering normal
velocities for the standard method, denoted fs, is given by

fs(v)=

{
K−1
s v exp(−�2c2) if vmin6v6vmax

0 otherwise

The normalization constant K−1
s for fs is given by

2�2Ks = S
√
�(erf xmax − erf xmin) + exp(−x2min)− exp(−x2max)

where xmin and xmax are non-dimensional thermal speeds de�ned by xmin =�(vmin − V ) and
xmax =�(vmax − V ), respectively. For computational e�ciency, vmin and vmax may be selected
such that

vmin = max(V − 3�−1; 0) and vmax = max(V + 3�−1; �−1) (3)
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Figure 2. Comparison between the theoretical distribution and the distributions generated using the
standard acceptance–rejection and the alternative methods for various values of S. For the standard
acceptance–rejection method, vmin and vmax are given by Equation (3). For the alternative method, v′ is

given by Equation (7). The sample size in each case was 105 velocities.

This corrects an anomalous e�ect in the DSMC coding provided by Bird [2], where vmin =0
at S=−3, so that no velocities can be accepted for that singular case. It also avoids the
unnecessary generation of values of v∗60, which can never be accepted.
A velocity v∗ is generated, uniformly distributed in the range vmin6v∗6vmax, and is accepted

if fs(v∗)=fs;max¿Rf, where fs;max =� exp(−�)(2�Ks)−1, as in Equation (2). The acceptance
criterion for the standard method may therefore be expressed as

2�v∗ exp(� − �2c∗2)=�¿Rf (4)

where c∗= v∗ − V . The distribution of accepted normal velocities is shown in Figure 2, for
S=−1, 1 and 5.
The acceptance–rejection procedure is applied to obtain the velocities of particles entering

the simulation space. The location of entering particles is determined by the generation of
further values of Rf. One value of Rf gives the fraction of the DSMC time step �t that
the particle travels within the cell, so that the distance normal to the boundary at the end
of the time step is speci�ed by v�tRf. For an Nd-dimensional simulation, a further Nd − 1
values of Rf are required to determine the location at which the particle crosses the simulation
boundary.
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The standard method is conventionally applied until the theoretically required number of
velocities is obtained, which is based on the theoretical number �ux [2]. If Ng possible values
of v∗ are generated and subjected to the acceptance criterion of Equation (4), the mean number
accepted Na is given by

Na =
Ng

(vmax − vmin)fs;max =
�Ng

(xmax − xmin)fs;max
where fs;max =� exp(−�)(2�Ks)−1. A variant of the standard method may therefore be
implemented where a �xed number of velocities Ng are generated, and then subjected to
the acceptance criterion of Equation (4) such that a varying number of velocities are accepted
at each time step, with the mean number accepted Na equal to the number calculated from
the theoretical number �ux.

4. THE ALTERNATIVE METHOD

In the alternative method of Garcia et al. [4] and Macrossan [5], the DSMC simulation
procedures are extended to an external region adjacent to the DSMC simulation domain.
Particles with velocities v∗ are created in this region at each time step. The particles are
uniformly distributed in the direction −n̂ to a distance v′�t from the boundary, where v′ is
a constant with the dimensions of velocity that is used to specify the extent of the region.
The number of particles created depends on the number density n of the external �ow, and
the velocities v∗ are generated according to the distribution of velocities characteristic of the
external �ow conditions. The particles are then moved at velocity v∗ for time �t, and those
that cross the simulation boundary and enter the simulation space are retained. Particles are
created at distances v′�tRf from the boundary, and move a distance v∗�t. Therefore, those
particles with v∗¿v′Rf are accepted, so the acceptance criterion for the alternative method
may be written

v∗=v′¿Rf (5)

The �nal position of each accepted particle relative to the boundary is simply the position to
which the particle moves after �t. As for the standard method, the location at which each
accepted particle crosses is determined by generating Nd−1 values of Rf for an Nd-dimensional
simulation.
As noted in Section 1, the alternative method may be cast in the form of an acceptance–

rejection procedure to replace the acceptance–rejection procedure of the standard method. In
that case, no bu�er cells are required, and potential values of v∗ are generated according to the
distribution function characteristic of the external �ow, which is in this case the equilibrium
distribution f0, and then are either accepted or rejected according to the criterion of Equa-
tion (5). The velocity distribution function of accepted particle velocities for the alternative
method, denoted fa, is given by

fa(v)=

{
K−1
a v exp(−�2c2) if 06v6v′

K−1
a v′ exp(−�2c2) if v¿v′

(6)
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The normalization constant K−1
a for fa is given by

2�2Ka = S
√
�(1 + erf S) + x′

√
�(1− erf x′) + exp(−S2)− exp(−x′2)

where x′ is a non-dimensional thermal speed de�ned by x′=�(v′ − V ). This method gives a
varying number of accepted velocities at each time step. Equation (6) shows that for v¿v′, a
fraction v′=v of the theoretical number required will be accepted. Therefore, the mean number
of velocities accepted using this method is slightly lower than the theoretical number required,
due to the depleted population of v¿v′ relative to the theoretical distribution. The ratio of
the number accepted to the theoretical number required is Ka=Kt .
In the standard method, no velocities v∗¿vmax are generated, due to the use of vmax for

computational e�ciency. Therefore the alternative method, despite the depleted population of
v¿v′, gives a more accurate distribution function, relative to the theoretical distribution of
Equation (1), than the standard method, because some high velocities can still be accepted.
Further, the alternative method gives the correct number of low velocities, whereas in the
standard method the generation of velocities v∗¡vmin is again prevented for computational
e�ciency.
Distribution functions of entering velocities obtained using the alternative method are shown

in Figure 2 for S=−1, 1 and 5, using
v′=V + 3�−1 which gives x′=3 (7)

It is apparent that the velocities provided by the alternative method conform closely to the
theoretical distribution.
As noted above, the alternative method gives a variable number of velocities accepted at

each time step, with the mean number accepted slightly less than the theoretical number
required. The de�ciency in accepted velocities is due to the depleted population of high-
speed particles, which depends on the constant v′, as implied by the dimensions of the bu�er
cells. The theoretically correct number of acceptances may be obtained simply by repeated
generation of velocities v∗, followed by application of the selection criterion of Equation (5),
until the required number of new particles is obtained. If bu�er cells are used, the number
density of simulator particles generated outside the simulation boundary should be increased
to a higher value n′ given by

n′= nKt=Ka

which will result in a variable number of particles crossing the simulation boundary at each
time step, with the mean number crossing equal to the theoretical number required. For the
alternative method, the fraction of particles accepted Na=Ng is given by

Na
Ng
=
�Ka√
�v′

=
�2Ka√
�(S + x′)

It is important to recognize that obtaining the correct number �ux for the alternative method
does not involve correcting the depleted population of high-speed particles. Correcting the
number �ux simply means that the theoretically correct number of particles enter the simu-
lation space at each time step. The distribution of entering velocities, after the correction is
applied, will still be depleted in high velocities relative to the theoretical distribution. Again,
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it is important to recognize that this is still an improvement over the standard method,
because all velocities can be represented, whereas in the standard method, the velocities v
are restricted to the range vmin6v6vmax.
The alternative method is implicit in hybrid CFD schemes, such as that described by Garcia

et al. [4]. However, the method of Macrossan [5] permits speci�cation of the distance from
the boundary to which particles are generated through the parameter v′. In hybrid schemes, the
distance is dictated by the dimensions of the bu�er cells for the DSMC simulation domain.
As indicated in Equation (6), higher values of v′ give distributions in better agreement with
the theoretical distribution of Equation (1).

5. COMPARISON OF COMPUTATIONAL EFFICIENCY

The computational e�ciency of the standard and alternative methods, both with a �xed number
of velocities accepted at each time step, was examined using C codes. The inverse of the
CPU time required per velocity accepted, which is indicative of computational e�ciency, is
shown in Figure 3 for −56S610. The results have been normalized with respect to the
standard method at S=0. The alternative method is more e�cient that the standard method for
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Figure 3. Comparison of computational e�ciency, relative to the standard acceptance–rejection method
at S =0, determined using C codes compiled with maximum optimization. Downstream boundaries
are represented by S¡0. For the standard acceptance–rejection method, vmin and vmax are given by

Equation (3). For the alternative method, v′ is given by Equation (7).
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S&2:5, and is extremely ine�cient for downstream boundaries where S¡0. The computational
e�ciency of the standard method is approximately constant for S¿3. Increasing the value of
v′ would decrease the computational e�ciency of the alternative method.

6. CONCLUSIONS

The alternative implementation of the stream boundary condition for DSMC computations, as
used in hybrid CFD schemes such as that of Garcia et al. [4] and as used by Macrossan [5],
gives a more accurate distribution of entering velocities than the standard acceptance–rejection
procedure of Bird [2]. Further, for S&2:5, the alternative method is more computationally ef-
�cient than the standard method. For downstream boundaries, where S¡0, the alternative
method is extremely ine�cient. The original implementations of the alternative method by
Garcia et al. and Macrossan resulted in a number �ux that was slightly lower than the theo-
retical number �ux, due to a depleted population of high velocities. Two methods for obtaining
the theoretically correct number �ux using the alternative method have been presented.
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